
rsync.net Systems and Data Security 
(Last updated October 10, 2022) 

Overview 

rsync.net storage arrays run the OpenSSH server 
software and no other server software. It is not possible 
to access an rsync.net storage array using any other 
protocol than SSH or on any other network port than 
TCP port 22. 

The root (superuser) account on these arrays is not 
accessible from the network. The root account can only 
be accessed by a specific user which, itself, can only be 
accessed from a protected "jumphost". This jumphost 
access is enforced by an IP restriction in the "jump user" 
authorized_keys file which is then locked immutable with 
chflags. 

There is no connection between tasks and processes 
running off of the storage array (such as stats collection 
or debugging or business processes) that utilize the root 
account on the storage arrays or cause any processes 
to be run, as root, on the storage arrays. The root 
account on an rsync.net storage array is used ONLY for 
housekeeping processes confined to that particular 
storage array OR for non-automated, specific tasks that 
are run manually, by a human being. 



All such access to the rsync.net storage arrays is 
performed by full-time, salaried employees of rsync.net 
who have been background checked[1] and is 
performed with an SSH key that contains a passphrase 
(the SSH key of the "jump user"). Access requires 
"something we have" combined with "something we 
know". Normal password authentication is disabled for 
the "jump user" who can elevate to root. 

The SSH keys and the key passphrases are different for 
each rsync.net storage array. 

These SSH keys are deployed only to approved, 
secured devices running approved operating systems. 
These devices cannot be mobile phones. 

Attack Surface 

An rsync.net storage array exposes almost zero attack 
surface - only TCP port 22 (which can be verified with 
nmap - for instance, against usw-s005.rsync.net). 

All of the typical attack surface related to mail service, 
serving of web pages, database servers, etc., take place 
on servers that contain no customer backup data and 
which have no ability to interact with the storage arrays 
as the root user. The "jump user" public key for any of 
the rsync.net storage arrays does not exist on any of our 
utility (web, mail, DB, etc.) servers. All interaction 



between these servers and rsync.net storage arrays (for 
the purpose of usage, stats, etc.) is performed as an 
unprivileged user. 

This means that there is no connection between the 
attack surface of these utility systems and the servers 
that they run (httpd, sendmail, inetd, etc.) and the 
rsync.net storage arrays. 

rsync.net Storage Arrays 

Every account deployed on an rsync.net storage array is 
deployed in its own "jail". The inability of one account to 
traverse into another account is enforced not on an 
application, or configuration level, but on a low level 
kernel and filesystem level. 

Every rsync.net filesystem on every rsync.net storage 
array is mounted noexec,nosuid. This means that it is 
impossible for an rsync.net customer to execute 
arbitrary code that they upload. In fact, it is impossible 
for them to execute any code whatsoever from their 
filesystem. 

The very limited whitelist of commands that a customer 
can run (see: https://www.rsync.net/resources/howto/
remote_commands.html ) is on a separate filesystem 
that is locked immutable by the chflag system call. 



There are no interpreters (shell, python, perl, etc.) 
available in this very limited environment. Helper 
programs that we host (such as borg, rdiff- backup, 
rclone, etc.) that appear to be python scripts are actually 
frozen binary executables. An actual python script would 
not be able to run as there is no python interpreter … or 
any interpreter. 

Risks 

It is possible, although historically extremely rare - for a 
remote-root OpenSSH vulnerability to be discovered. 
This could allow an attacker to - even one without a 
customer login - to gain access to an rsync.net storage 
array remotely and escalate privilege to root. Not only is 
a remote root OpenSSH vulnerability extremely rare, it is 
by some measures unprecedented in a FreeBSD 
deployment such as ours. 

It is possible for the much more complicated utility 
servers that rsync.net runs - such as our mail server, 
web server, database servers, etc., to be compromised 
by any number of software pieces that are necessarily 
run on such systems. Such a compromise would, at 
worst, leak customer meta- data (although NOT 
payment card data) such as their names, addresses, 
emails, etc. This would not present a risk to the actual 
data stored on the actual rsync.net storage arrays. 



It is possible that one of our employees could have their 
laptop or phone stolen which would allow an attacker to 
access, for a short period of time, our customer 
database and internal email server. Again, this would not 
present a risk to the actual data stored on the actual 
rsync.net storage arrays. 

It is possible that an attacker could compromise an 
employee laptop and install a "rootkit", such as a 
keylogger combined with a traffic log and local 
filesystem access. In this scenario, the attacker would 
eavesdrop on the connection to our secure jumphost 
(whose IP address is kept hidden) and would have 
access to the public key of the "jump user" that is used 
to login and could log the keystrokes of the passphrase 
of that key. However, even in this very dangerous and 
compromised scenario, the attacker would then find it 
impossible to make an SSH connection to the jumphost 
to use those credentials. rsync.net does not disclose 
how this is achieved - it is a method whose security 
rests in its secrecy. In such a scenario, the attacker 
would possess the SSH public key of the "jump user" 
and would know the passphrase for that key, but their 
SSH connection to the jumphost would time out. Further, 
their attempts to connect to the jumphost without this 
secret and out of band authentication would very clearly 
indicate an attack and would cause the jumphost to shut 
down until we could intervene. This scenario has never 
occurred. 



It is possible that an rsync.net employee could attack 
rsync.net from within and destroy or exfiltrate customer 
data from the rsync.net storage arrays. The main 
mitigation against this threat is disallowing all access to 
rsync.net storage arrays except from full-time, salaried, 
background checked employees. Contractors and 
datacenter partners, etc., have no access of any 
kind to the rsync.net storage arrays. 

Secrets 

The vast majority of the security of the rsync.net storage 
arrays is dependent not on secrets, but on secure 
configuration - so it is possible for rsync.net to publish 
almost every piece of the configuration of these systems 
without compromising their security. 

There are two items, however, whose security relies on 
their secrecy and they are: 

1. The address of our SSH jumphost 

2. The final, out of band, authentication information that 
allows our jump user to SSH to our jumphost 

Every other piece of our configuration is public 
knowledge and is disclosable - its security rests in the 
configuration, not its secrecy. 



[1] rsync.net uses Goodhire to perform background 
checks on employees. 


